Structure of the DNA-binding domain of NgTRF1 reveals unique features of plant telomere-binding proteins.
Ko S, Jun SH, Bae H, Byun JS, Han W, Park H, Yang SW, Park SY, Jeon YH, Cheong C, Kim WT, Lee W, Cho HS
Nucleic Acids Research (2008)
Category: telomere ¤ Added: Mar 31, 2008 ¤ Rating: ◊◊
Telomeres are protein-DNA elements that are located at the ends of linear eukaryotic chromosomes. In concert with various telomere-binding proteins, they play an essential role in genome stability. We determined the structure of the DNA-binding domain of NgTRF1, a double-stranded telomere-binding protein of tobacco, using multidimensional NMR spectroscopy and X-ray crystallography. The DNA-binding domain of NgTRF1 contained the Myb-like domain and C-terminal Myb-extension that is characteristic of plant double-stranded telomere-binding proteins. It encompassed amino acids 561-681 (NgTRF1(561-681)), and was composed of 4 alpha-helices. We also determined the structure of NgTRF1(561-681) bound to plant telomeric DNA. We identified several amino acid residues that interacted directly with DNA, and confirmed their role in the binding of NgTRF1 to telomere using site-directed mutagenesis. Based on a structural comparison of the DNA-binding domains of NgTRF1 and human TRF1 (hTRF1), NgTRF1 has both common and unique DNA-binding properties. Interaction of Myb-like domain with telomeric sequences is almost identical in NgTRF1(561-681) with the DNA-binding domain of hTRF1. The interaction of Arg-638 with the telomeric DNA, which is unique in NgTRF1(561-681), may provide the structural explanation for the specificity of NgTRF1 to the plant telomere sequences, (TTTAGGG)(n).
Keywords: