Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS
Nature (2006)
Category: proteomics ¤ Added: Jun 15, 2006 ¤ Rating: ◊◊
A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of .2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/ destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein’s mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.