Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p.
Nobile CJ, Mitchell AP
Current Biology (2005)
Category: biofilms, morphogenesis, yeast pathogens ¤ Added: Sep 02, 2005 ¤ Rating: ◊◊
The impact of many microorganisms on their environment depends upon their ability to form surface bound communities called biofilms [1]. Biofilm formation on implanted medical devices has severe consequences for human health by providing both a portal of entry and a sanctuary for invasive bacterial and fungal pathogens [1 and 2]. Biofilm regulators and adherence molecules are extensively defined for many bacterial pathogens [3, 4, and 5], but not for fungal pathogens such as Candida albicans. Elongated filaments called hyphae are a prominent feature of C. albicans biofilms, and known genes that promote biofilm formation are required for hyphal development [2, 6, 7 and 8]. From a new library of transcription-factor mutants, we identify Bcr1p, a zinc finger protein required for formation of biofilms but not hyphae. Expression analysis shows that Bcr1p activates cell-surface protein and adhesin genes, including several induced during hyphal development. BCR1 expression depends upon the hyphal regulator Tec1p. Thus, BCR1 is a downstream component of the hyphal regulatory network that couples expression of cell-surface genes to hyphal differentiation. Our results indicate that hyphal cells are specialized to present adherence molecules that support biofilm integrity.