Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria.
Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A
Biochemica et Biophysica Acta (2002)
Category: mitochondria-protein phosphorylation ¤ Added: Jun 11, 2002 ¤ Rating: ◊
Analysis of protein phosphorylation in highly purified rat brain mitochondria revealed the presence of several alkali-stable phosphoproteins whose phosphorylation markedly increases upon treatment with peroxovanadate and Mn(2+), a property indicating tyrosine phosphorylation. These include three prominent bands, with apparent sizes of 50, 60, and 75 kDa, which are detectable by anti-phosphotyrosine. Tyrosine phosphorylation disappears when mitochondria are treated with PP2, an inhibitor of the Src kinase family, suggesting the presence of members of this family in rat brain mitochondria. Immunoblotting and immunoprecipitation assays of mitochondrial lysates confirmed the presence of Fyn, Src and Lyn kinases, as well as Csk, a protein kinase which negatively controls the activity of the Src kinase family. Results show that tyrosine-phosphorylated proteins are membrane-bound and that they are located on the inner surface of the outer membrane and/or the external surface of the inner membrane. Instead, Src tyrosine kinases are mainly located in the intermembrane space - in particular, as revealed by immunogold experiments for Lyn kinase, in the cristal lumen. Rat brain mitochondria were also found to possess a marked level of tyrosine phosphatase activity, strongly inhibited by peroxovanadate.