Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.
Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M
Current Biology (2004)
Category: chromatin structure ¤ Added: Dec 08, 2004 ¤ Rating: ◊◊
BACKGROUND: In response to DNA double-strand breaks (DSBs), eukaryotic cells rapidly phosphorylate histone H2A isoform H2AX at a C-terminal serine (to form gamma-H2AX) and accumulate repair proteins at or near DSBs. To date, these events have been defined primarily at the resolution of light microscopes, and the relationship between gamma-H2AX formation and repair protein recruitment remains to be defined. RESULTS: We report here the first molecular-level characterization of regional chromatin changes that accompany a DSB formed by the HO endonuclease in Saccharomyces cerevisiae. Break induction provoked rapid gamma-H2AX formation and equally rapid recruitment of the Mre11 repair protein. gamma-H2AX formation was efficiently promoted by both Tel1p and Mec1p, the yeast ATM and ATR homologs; in G1-arrested cells, most gamma-H2AX formation was dependent on Tel1 and Mre11. gamma-H2AX formed in a large (ca. 50 kb) region surrounding the DSB. Remarkably, very little gamma-H2AX could be detected in chromatin within 1-2 kb of the break. In contrast, this region contains almost all the Mre11p and other repair proteins that bind as a result of the break. CONCLUSIONS: Both Mec1p and Tel1p can respond to a DSB, with distinct roles for these checkpoint kinases at different phases of the cell cycle. Part of this response involves histone phosphorylation over large chromosomal domains; however, the distinct distributions of gamma-H2AX and repair proteins near DSBs indicate that localization of repair proteins to breaks is not likely to be the main function of this histone modification.