Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis.
Rogers PD, Barker KS
Antimicrobial Agents and Chemotherapy (2002)
Category: yeast pathogens ¤ Added: Nov 14, 2003 ¤ Rating: ◊◊
The opportunistic fungal pathogen Candida albicans is the major causative agent of oropharyngeal candidiasis (OPC) in AIDS. The development of azoles, such as fluconazole, for the treatment of OPC has proven effective except in cases where C. albicans develops resistance to fluconazole during the course of treatment. In the present study, we used microarray technology to examine differences in gene expression from a fluconazole-susceptible and a fluconazole-resistant well-characterized, clinically obtained matched set of C. albicans isolates to identify genes which are differentially expressed in association with azole resistance. Among genes found to be differentially expressed were those involved in amino acid and carbohydrate metabolism; cell stress, cell wall maintenance; lipid, fatty acid, and sterol metabolism; and small molecule transport. In addition to CDR1, which has previously been demonstrated to be associated with azole resistance, the drug resistance gene RTA3, the ergosterol biosynthesis gene ERG2, and the cell stress genes CRD2, GPX1, and IFD5 were found to be upregulated. Several genes, such as the mitochondrial aldehyde dehydrogenase gene ALD5, the glycosylphosphatidylinositol synthesis gene GPI1, and the iron transport genes FET34 and FTR2 were found to be downregulated. Further study of these differentially regulated genes is warranted to evaluate how they may be involved in azole resistance. In addition to these novel findings, we demonstrate the utility of microarray analysis for studying the molecular mechanisms of drug resistance in pathogenic organisms.