Intercellular communication via intracellular calcium oscillations.
Gracheva ME, Gunton JD
Journal of Theoretical Biology (2003)
Category: oscillations ¤ Added: Jul 15, 2003 ¤ Rating: ◊◊
In this letter, we present the results of a simple model for intercellular communication via calcium oscillations, motivated in part by a recent experimental study. The model describes two cells (a "donor" and "sensor") whose intracellular dynamics involve a calcium-induced, calcium release process. The cells are coupled by assuming that the input of the sensor cell is proportional to the output of the donor cell. As one varies the frequency of calcium oscillations of the donor cell, the sensor cell passes through a sequence of N : M phase-locked regimes and exhibits a "Devil's staircase" behavior. Such a phase-locked response has been seen experimentally in pulsatile stimulation of single cells. We also study a stochastic version of the coupled two-cell model. We find that phase locking holds for realistic choices for the cell volume.